Curriculum
Mutuazione: 20410875 FM530 - METODI MATEMATICI PER IL MACHINE LEARNING in Scienze Computazionali LM-40 TERESI LUCIANO, GIULIANI ALESSANDRO
Programme
Highlights of Linear Algebra:Matrix-matrix multiplication; column & row space; rank
The four fundamental subspaces of linear algebra
Fundamentals of Matrix factorizations:
A=LU rows & columns point of view
A=LU elimination & factorization; permutations
A=RU=VU; Orthogonal matrices
Eigensystems and Linear ODE
Intro to PSym; the energy function
Gradient and Hessian
Singular Value Decomposition
Eckart-Young; derivative of a matrix norm
Principal Component Analysis
Generalized evectors;
Norms
Least Squares
Convexity & Newton’s method
Newton & L-M method; Recap of non-linear regression
Lagrange multipliers
Machine Learning:
Gradient Descend; exact line search; GD in action; GD with Matlab
Learning & Loss; Intro to Deep Neural Network; DNN with Matlab
Loss functions: Quadratic VS Cross entropy
Stocastics Gradient Descend (SGD) & Kaczmarcz; SGD convergence rates & ADAM
Matlab interface for DNN
Construction of DNN: the key steps
Backpropagation and the Chain Rule
Machine Learning examples with Wolfram Mathematica
Convolutional NN + Mathematica examples of 1D convolution
Convolution and 2D filters + Mathematica examples of 2D convolution
Matlab Live Script, Network Designer, Pretrained Net
Core Documentation
Lecture notesType of delivery of the course
Theory and practicals with computers; practicals have a noteworthy role in these lecturType of evaluation
Project to be defined with the instructor: the students are required to produce a written report containing the description of a select problem and a discussion about the numerical experiments.Mutuazione: 20410875 FM530 - METODI MATEMATICI PER IL MACHINE LEARNING in Scienze Computazionali LM-40 TERESI LUCIANO, GIULIANI ALESSANDRO
Programme
Highlights of Linear Algebra:Matrix-matrix multiplication; column & row space; rank
The four fundamental subspaces of linear algebra
Fundamentals of Matrix factorizations:
A=LU rows & columns point of view
A=LU elimination & factorization; permutations
A=RU=VU; Orthogonal matrices
Eigensystems and Linear ODE
Intro to PSym; the energy function
Gradient and Hessian
Singular Value Decomposition
Eckart-Young; derivative of a matrix norm
Principal Component Analysis
Generalized evectors;
Norms
Least Squares
Convexity & Newton’s method
Newton & L-M method; Recap of non-linear regression
Lagrange multipliers
Machine Learning:
Gradient Descend; exact line search; GD in action; GD with Matlab
Learning & Loss; Intro to Deep Neural Network; DNN with Matlab
Loss functions: Quadratic VS Cross entropy
Stocastics Gradient Descend (SGD) & Kaczmarcz; SGD convergence rates & ADAM
Matlab interface for DNN
Construction of DNN: the key steps
Backpropagation and the Chain Rule
Machine Learning examples with Wolfram Mathematica
Convolutional NN + Mathematica examples of 1D convolution
Convolution and 2D filters + Mathematica examples of 2D convolution
Matlab Live Script, Network Designer, Pretrained Net
Core Documentation
Lecture notesType of delivery of the course
Theory and practicals with computers; practicals have a noteworthy role in these lecturType of evaluation
Project to be defined with the instructor: the students are required to produce a written report containing the description of a select problem and a discussion about the numerical experiments.Mutuazione: 20410875 FM530 - METODI MATEMATICI PER IL MACHINE LEARNING in Scienze Computazionali LM-40 TERESI LUCIANO, GIULIANI ALESSANDRO
Programme
Highlights of Linear Algebra:Matrix-matrix multiplication; column & row space; rank
The four fundamental subspaces of linear algebra
Fundamentals of Matrix factorizations:
A=LU rows & columns point of view
A=LU elimination & factorization; permutations
A=RU=VU; Orthogonal matrices
Eigensystems and Linear ODE
Intro to PSym; the energy function
Gradient and Hessian
Singular Value Decomposition
Eckart-Young; derivative of a matrix norm
Principal Component Analysis
Generalized evectors;
Norms
Least Squares
Convexity & Newton’s method
Newton & L-M method; Recap of non-linear regression
Lagrange multipliers
Machine Learning:
Gradient Descend; exact line search; GD in action; GD with Matlab
Learning & Loss; Intro to Deep Neural Network; DNN with Matlab
Loss functions: Quadratic VS Cross entropy
Stocastics Gradient Descend (SGD) & Kaczmarcz; SGD convergence rates & ADAM
Matlab interface for DNN
Construction of DNN: the key steps
Backpropagation and the Chain Rule
Machine Learning examples with Wolfram Mathematica
Convolutional NN + Mathematica examples of 1D convolution
Convolution and 2D filters + Mathematica examples of 2D convolution
Matlab Live Script, Network Designer, Pretrained Net
Core Documentation
Lecture notesType of delivery of the course
Theory and practicals with computers; practicals have a noteworthy role in these lecturType of evaluation
Project to be defined with the instructor: the students are required to produce a written report containing the description of a select problem and a discussion about the numerical experiments.Mutuazione: 20410875 FM530 - METODI MATEMATICI PER IL MACHINE LEARNING in Scienze Computazionali LM-40 TERESI LUCIANO, GIULIANI ALESSANDRO
Programme
Highlights of Linear Algebra:Matrix-matrix multiplication; column & row space; rank
The four fundamental subspaces of linear algebra
Fundamentals of Matrix factorizations:
A=LU rows & columns point of view
A=LU elimination & factorization; permutations
A=RU=VU; Orthogonal matrices
Eigensystems and Linear ODE
Intro to PSym; the energy function
Gradient and Hessian
Singular Value Decomposition
Eckart-Young; derivative of a matrix norm
Principal Component Analysis
Generalized evectors;
Norms
Least Squares
Convexity & Newton’s method
Newton & L-M method; Recap of non-linear regression
Lagrange multipliers
Machine Learning:
Gradient Descend; exact line search; GD in action; GD with Matlab
Learning & Loss; Intro to Deep Neural Network; DNN with Matlab
Loss functions: Quadratic VS Cross entropy
Stocastics Gradient Descend (SGD) & Kaczmarcz; SGD convergence rates & ADAM
Matlab interface for DNN
Construction of DNN: the key steps
Backpropagation and the Chain Rule
Machine Learning examples with Wolfram Mathematica
Convolutional NN + Mathematica examples of 1D convolution
Convolution and 2D filters + Mathematica examples of 2D convolution
Matlab Live Script, Network Designer, Pretrained Net
Core Documentation
Lecture notesType of delivery of the course
Theory and practicals with computers; practicals have a noteworthy role in these lecturType of evaluation
Project to be defined with the instructor: the students are required to produce a written report containing the description of a select problem and a discussion about the numerical experiments.