L’obiettivo del corso è quello di fornire agli studenti i metodi, gli strumenti e le procedure utili alla conoscenza ed all’analisi degli edifici storici, delle loro caratteristiche materiali, costruttive e di conservazione. Particolare riguardo verrà dato all’apprendimento dei metodi di rilevamento integrato, utilizzando tecniche tradizionali di rilievo diretto coordinate con quelle di rilievo 3D (image based e range based).
scheda docente materiale didattico
Curve nello Spazio. Curve parametriche in R³. Curvatura e torsione. Esempi grafici della loro costruzione e animazioni con Mathematica. La terna di riferimento di Frenet: versori tangente, normale e binormale. Movimenti rigidi nello spazio. Matrici di rotazione e di riflessione. Curve in forma implicita. Curve su superfici. Coordinate cilindriche e sferiche.
Superfici. Superfici parametriche in R³. Matrice Jacobiana. Il Gradiente. Grafici di funzioni di 2 variabili. Intersezioni di superfici. Cupole e Volte. Superfici tubolari, coniche e cilindriche. Determinazione dell’equazione di una superficie da un esempio architettonico tridimensionale. Misure della distanza di un insieme di punti da una superficie parametrica.
Dispense con esempi di utilizzo del software Mathematica sono presenti nel sito del corso http://www.formulas.it/sito/corsi/matematica-curve-e-superfici-falcolini/
M. Abate, F. Tovena, Curve e Superfici, Springer (2006)
Fruizione: 21002037 MATEMATICA - CURVE E SUPERFICI in Architettura - Progettazione architettonica LM-4 N0 FALCOLINI CORRADO
Programma
Curve Piane. Piano nello spazio. Distanza punto-piano. Sezioni piane. Curve parametriche in R². Lunghezza di un arco di curva. La curvatura. Esempi utilizzando il software Mathematica: comandi per grafici e calcolo simbolico e numerico. Determinazione dell’equazione di una curva su un profilo dato in una immagine. Curve in forma implicita. Coordinate polari. Movimenti rigidi di una curva piana: traslazioni, rotazioni e riflessioni. Matrici di rotazione e di riflessione. Curve definite dalla curvatura.Curve nello Spazio. Curve parametriche in R³. Curvatura e torsione. Esempi grafici della loro costruzione e animazioni con Mathematica. La terna di riferimento di Frenet: versori tangente, normale e binormale. Movimenti rigidi nello spazio. Matrici di rotazione e di riflessione. Curve in forma implicita. Curve su superfici. Coordinate cilindriche e sferiche.
Superfici. Superfici parametriche in R³. Matrice Jacobiana. Il Gradiente. Grafici di funzioni di 2 variabili. Intersezioni di superfici. Cupole e Volte. Superfici tubolari, coniche e cilindriche. Determinazione dell’equazione di una superficie da un esempio architettonico tridimensionale. Misure della distanza di un insieme di punti da una superficie parametrica.
Testi Adottati
Alfred Gray, E. Abbena, S. Salamon Modern Differential Geometry of Curves and Surfaces with Mathematica, Third Edition Chapman & Hall/CRC (2006)Dispense con esempi di utilizzo del software Mathematica sono presenti nel sito del corso http://www.formulas.it/sito/corsi/matematica-curve-e-superfici-falcolini/
M. Abate, F. Tovena, Curve e Superfici, Springer (2006)
Modalità Erogazione
Le lezioni a distanza sono svolte per le prime lezioni sulla piattaforma Moodle e per il resto del corso sulla piattaforma TEAMS. Le lezioni sono in forma laboratoriale rivolte a tutti gli studenti in modalità a distanza utilizzando il software Mathematica, per la parte di elaborazione ed analisi di modelli matematici, e Metashape per il rilievo fotogrammetrico e la generazione di "Nuvole di punti". Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni che regolino le modalità di svolgimento delle attività didattiche e della valutazione degli studenti.Modalità Frequenza
Gli studenti devono aver seguito almeno il 75% delle lezioni per essere ammessi all'esameModalità Valutazione
Prova orale: è incentrata sulla presentazione di una tesina riguardante un modello matematico di superficie da un esempio architettonico tridimensionale; il modello è ottimizzato rispetto alla sua distanza dalla "nuvola di punti" del rilievo ottenuto a partire da foto degli studenti utilizzando un programma di fotogrammetria. La prova orale sarà preceduta da un test comune a tutti gli studenti che servirà come base di partenza per il colloquio argomentativo. Nel caso di un prolungamento dell’emergenza sanitaria da COVID-19 saranno recepite tutte le disposizioni che regolino le modalità di svolgimento delle attività didattiche e della valutazione degli studenti.