L'obiettivo del corso è di introdurre lo studente nel mondo dell'elettronica. Saranno illustrati i principi di funzionamento e i modelli dei principali dispositivi a semiconduttore (diodi, transistor bipolari e transistor ad effetto di campo) e il loro impiego nei circuiti elettronici fondamentali, focalizzando l’attenzione su amplificatori e porte logiche fondamentali e studiandone le proprietà nel dominio del tempo e della frequenza.
scheda docente materiale didattico
Introduzione all’elettronica. Principi di funzionamento e modelli della giunzione pn e dei transistori BJT e MOSFET. Polarizzazione dei transistori BJT e MOSFET. Configurazioni fondamentali. Amplificatori a singolo stadio e a più stadi. Amplificatore differenziale. Generatori di corrente. Carichi attivi. Comportamento in frequenza degli amplificatori. Porte logiche fondamentali e amplificatori in tecnologia NMOS e CMOS. Teoria della reazione e amplificatori controreazionati. Oscillatori. Amplificatori operazionali. Esempi di applicazioni dei più comuni circuiti analogici.
Programma dettagliato
Introduzione: breve storia dell’elettronica, classificazione dei segnali, convenzioni, approccio alla soluzione dei problemi, cenni teoria dei circuiti, spettro dei segnali, amplificatori, invertitori logici, variazioni dei parametri di progetto, precisione numerica.
Cenni di teoria dei semiconduttori: semiconduttori e dispositivi elettronici, resistività di isolanti, semiconduttori e conduttori, legami covalenti e diagrammi a bande dei semiconduttori, banda proibita e concentrazione intrinseca, comportamento di elettroni e lacune nei semiconduttori, donori e accettori, controllo della popolazione di elettroni e lacune mediante drogaggio, correnti di deriva e diffusione, mobilità e velocità di saturazione, dipendenza della mobilità da drogaggio e temperatura.
Diodi e circuiti a diodi: strutura e layout del diodo, elettrostatica della giunzione pn, regioni di funzionamento (diretta, inversa, e breakdown), modelli per la descrizione del diodo, analisi e progetto di circuiti a diodi, applicazioni (rettificatori, alimentatori, regolatori, convertitori).
Transistor BJT: struttura del dispositivo, principio di funzionamento, caratteristiche corrente-tensione, il BJT come amplificatore, il BJT come interruttore, circuiti con BJT in continua, polarizzazione degli amplificatori a BJT, funzionamento per piccoli segnali e modelli, amplificatori a BJT singolo stadio. Regolatori di tensione discreti.
Transistor MOSFET: struttura e principio di funzionamento dei MOSFET, regioni di funzionamento (triodo, saturazione, cutoff), modello matematico e caratteristica i-v, circuiti a MOSFET in continua, polarizzazione degli amplificatori a MOSFET, il MOSFET come amplificatore e come interruttore, modelli e funzionamento per piccoli segnali, amplificatori MOS a singolo stadio, invertitori logici NMOS, CMOS.
Amplificatori integrati: strategie di progetto di IC, confronto MOSFET – BJT, la polarizzazione nei circuiti integrati. Amplificatori CS e CE, amplificatori CG e CB, amplificatori CD e CC, amplificatori con due transistor. Amplificatori cascode.
Amplificatore differenziale: coppia differenziale a MOSFET, funzionamento per piccoli segnali, coppia differenziale a BJT, caratteristiche non ideali, amplificatore differenziale con carico attivo.
Risposta in frequenza
Metodi di analisi (esatti, Miller, costanti di tempo). Comportamento in bassa frequenza. Modelli di BJT e MOSFET in alta frequenza. Risposta in alta frequenza degli amplificatori.
La retroazione: cenni sulla teoria della controreazione, classificazione, proprietà, esempi. Il problema della stabilità. Compensazione in frequenza.
Oscillatori sinusoidali: principidi base degli oscillatori, criterio di Barkhausen, oscillatori accordati LC (Colpitts e Hartley).
oppure
A.S. Sedra, K.C. Smith "Circuiti per la microelettronica" EDISES 4a edizione
+contenuti aggiuntivi su piattaforma e-learning Moodle
Programma
Programma sinteticoIntroduzione all’elettronica. Principi di funzionamento e modelli della giunzione pn e dei transistori BJT e MOSFET. Polarizzazione dei transistori BJT e MOSFET. Configurazioni fondamentali. Amplificatori a singolo stadio e a più stadi. Amplificatore differenziale. Generatori di corrente. Carichi attivi. Comportamento in frequenza degli amplificatori. Porte logiche fondamentali e amplificatori in tecnologia NMOS e CMOS. Teoria della reazione e amplificatori controreazionati. Oscillatori. Amplificatori operazionali. Esempi di applicazioni dei più comuni circuiti analogici.
Programma dettagliato
Introduzione: breve storia dell’elettronica, classificazione dei segnali, convenzioni, approccio alla soluzione dei problemi, cenni teoria dei circuiti, spettro dei segnali, amplificatori, invertitori logici, variazioni dei parametri di progetto, precisione numerica.
Cenni di teoria dei semiconduttori: semiconduttori e dispositivi elettronici, resistività di isolanti, semiconduttori e conduttori, legami covalenti e diagrammi a bande dei semiconduttori, banda proibita e concentrazione intrinseca, comportamento di elettroni e lacune nei semiconduttori, donori e accettori, controllo della popolazione di elettroni e lacune mediante drogaggio, correnti di deriva e diffusione, mobilità e velocità di saturazione, dipendenza della mobilità da drogaggio e temperatura.
Diodi e circuiti a diodi: strutura e layout del diodo, elettrostatica della giunzione pn, regioni di funzionamento (diretta, inversa, e breakdown), modelli per la descrizione del diodo, analisi e progetto di circuiti a diodi, applicazioni (rettificatori, alimentatori, regolatori, convertitori).
Transistor BJT: struttura del dispositivo, principio di funzionamento, caratteristiche corrente-tensione, il BJT come amplificatore, il BJT come interruttore, circuiti con BJT in continua, polarizzazione degli amplificatori a BJT, funzionamento per piccoli segnali e modelli, amplificatori a BJT singolo stadio. Regolatori di tensione discreti.
Transistor MOSFET: struttura e principio di funzionamento dei MOSFET, regioni di funzionamento (triodo, saturazione, cutoff), modello matematico e caratteristica i-v, circuiti a MOSFET in continua, polarizzazione degli amplificatori a MOSFET, il MOSFET come amplificatore e come interruttore, modelli e funzionamento per piccoli segnali, amplificatori MOS a singolo stadio, invertitori logici NMOS, CMOS.
Amplificatori integrati: strategie di progetto di IC, confronto MOSFET – BJT, la polarizzazione nei circuiti integrati. Amplificatori CS e CE, amplificatori CG e CB, amplificatori CD e CC, amplificatori con due transistor. Amplificatori cascode.
Amplificatore differenziale: coppia differenziale a MOSFET, funzionamento per piccoli segnali, coppia differenziale a BJT, caratteristiche non ideali, amplificatore differenziale con carico attivo.
Risposta in frequenza
Metodi di analisi (esatti, Miller, costanti di tempo). Comportamento in bassa frequenza. Modelli di BJT e MOSFET in alta frequenza. Risposta in alta frequenza degli amplificatori.
La retroazione: cenni sulla teoria della controreazione, classificazione, proprietà, esempi. Il problema della stabilità. Compensazione in frequenza.
Oscillatori sinusoidali: principidi base degli oscillatori, criterio di Barkhausen, oscillatori accordati LC (Colpitts e Hartley).
Testi Adottati
A.S. Sedra, K.C. Smith "Circuiti per la microelettronica" EDISES 5a edizioneoppure
A.S. Sedra, K.C. Smith "Circuiti per la microelettronica" EDISES 4a edizione
+contenuti aggiuntivi su piattaforma e-learning Moodle
Bibliografia Di Riferimento
nessunaModalità Erogazione
72 ore di lezioni frontali in aula + esercitazioni registrateModalità Frequenza
frequenza non obbligatoria ma fortemente consigliataModalità Valutazione
La valutazione prevede una prova scritta e una prova orale (alla prova orale si accede solo superando quella scritta). In alternativa è possibile accedere alla prova orale con il superamento delle prove in itinere.