Curriculum
Canali
Programme
The numbers refer to the chapters and paragraphs of the textbook:Calcolo of P. Marcellini and C. Sbordone.
1) Real numbers and functions
Natural, whole and rational numbers; density of rationals (5). Axioms of real numbers (2). Overview of set theory (4).
The intuitive concept of function (6) and Cartesian representation (7).
Injective, surjective, bijective and invertible functions. Monotonic functions (8).
Absolute value (9). The principle of induction (13).
2) Complements to real numbers
Maximum, minimum, supremum, infimum.
7) Succession limits
Definition and first properties (56.57).
Limited successions (58). Operations with limits (59).
Indefinite forms (60).
Comparative theorems (61). Other properties of succession limits (62).
Notable limits (63). Monotone sequences, the number e (64).
Sequence going to infinity of increasing order (67).
8) Function limits. Continuous functions
Definition of limit and property (71,72,73).
Continuous functions (74). discontinuity (75).
Theorems on continuous functions (76).
9) Additions to the limits
The theorem on monotonic sequences (80).
Extracted successions; the Bolzano-Weierstrass theorem (81).
The Weierstrass theorem (82).
Continuity of monotonic functions and inverse functions (83).
10) Derivatives
Definition and physical meaning (88-89). Operations with derivatives (90).
Derivatives of compound functions and inverse functions (91).
Derivative of elementary functions (92).
Geometric meaning of the derivative: tangent line (93).
11) Applications of derivatives. Function study
Maximum and minimum relative. Fermat's theorem (95).
Theorems of Rolle and Lagrange (96).
Increasing, decreasing, convex and concave functions (97-98).
De l'Hopital theorem (99).
Study of the graph of a function (100).
Taylor's formula: first properties (101).
14) Integration according to Riemann
Definition (117). Properties of the defined integrals (118).
Uniform continuity. Cantor's theorem (119).
Integrability of continuous functions (120).
The theorems of the average (121).
15) Undefined integrals
The fundamental theorem of integral calculus (123).
Primitives (124). The indefinite integral (125). Integration by parts and by substitution
(126,127,128,129).
Improper integrals (132).
16) Taylor's formula
Rest of Peano (135).
Use of Taylor's formula in the calculation of limits (136).
17) Series
Numerical series (141).
Series with positive terms (142).
Geometric series and harmonic series (143.144).
Convergence criteria (145).
Alternate series (146).
Absolute convergence (147).
Taylor series (149).
Core Documentation
S. Lang, A First Course in Calculus, Springer Ed.Attendance
not compulsory but suggestedType of evaluation
written test with exercises and subsequent oral testFruizione: 20810231 ANALISI MATEMATICA I in Ingegneria meccanica L-9 R CANALE 2 NATALINI PIERPAOLO
Programme
real numbers; real functions of one real variable; function limits; differentiability; integral; series; Taylor's formula; complex numbers.Core Documentation
Calcolo differenziale. LaforgiaAnalisi Matematica 1. Marcellini-Sbordone.
Esercitazione di Analisi Matematica 1. Marcellini-Sbordone.
Attendance
optionalType of evaluation
written exam, intermedial examCanali
Programme
The numbers refer to the chapters and paragraphs of the textbook:Calcolo of P. Marcellini and C. Sbordone.
1) Real numbers and functions
Natural, whole and rational numbers; density of rationals (5). Axioms of real numbers (2). Overview of set theory (4).
The intuitive concept of function (6) and Cartesian representation (7).
Injective, surjective, bijective and invertible functions. Monotonic functions (8).
Absolute value (9). The principle of induction (13).
2) Complements to real numbers
Maximum, minimum, supremum, infimum.
7) Succession limits
Definition and first properties (56.57).
Limited successions (58). Operations with limits (59).
Indefinite forms (60).
Comparative theorems (61). Other properties of succession limits (62).
Notable limits (63). Monotone sequences, the number e (64).
Sequence going to infinity of increasing order (67).
8) Function limits. Continuous functions
Definition of limit and property (71,72,73).
Continuous functions (74). discontinuity (75).
Theorems on continuous functions (76).
9) Additions to the limits
The theorem on monotonic sequences (80).
Extracted successions; the Bolzano-Weierstrass theorem (81).
The Weierstrass theorem (82).
Continuity of monotonic functions and inverse functions (83).
10) Derivatives
Definition and physical meaning (88-89). Operations with derivatives (90).
Derivatives of compound functions and inverse functions (91).
Derivative of elementary functions (92).
Geometric meaning of the derivative: tangent line (93).
11) Applications of derivatives. Function study
Maximum and minimum relative. Fermat's theorem (95).
Theorems of Rolle and Lagrange (96).
Increasing, decreasing, convex and concave functions (97-98).
De l'Hopital theorem (99).
Study of the graph of a function (100).
Taylor's formula: first properties (101).
14) Integration according to Riemann
Definition (117). Properties of the defined integrals (118).
Uniform continuity. Cantor's theorem (119).
Integrability of continuous functions (120).
The theorems of the average (121).
15) Undefined integrals
The fundamental theorem of integral calculus (123).
Primitives (124). The indefinite integral (125). Integration by parts and by substitution
(126,127,128,129).
Improper integrals (132).
16) Taylor's formula
Rest of Peano (135).
Use of Taylor's formula in the calculation of limits (136).
17) Series
Numerical series (141).
Series with positive terms (142).
Geometric series and harmonic series (143.144).
Convergence criteria (145).
Alternate series (146).
Absolute convergence (147).
Taylor series (149).
Core Documentation
S. Lang, A First Course in Calculus, Springer Ed.Attendance
not compulsory but suggestedType of evaluation
written test with exercises and subsequent oral testFruizione: 20810231 ANALISI MATEMATICA I in Ingegneria meccanica L-9 R CANALE 2 NATALINI PIERPAOLO
Programme
real numbers; real functions of one real variable; function limits; differentiability; integral; series; Taylor's formula; complex numbers.Core Documentation
Calcolo differenziale. LaforgiaAnalisi Matematica 1. Marcellini-Sbordone.
Esercitazione di Analisi Matematica 1. Marcellini-Sbordone.
Attendance
optionalType of evaluation
written exam, intermedial examCanali
Programme
The numbers refer to the chapters and paragraphs of the textbook:Calcolo of P. Marcellini and C. Sbordone.
1) Real numbers and functions
Natural, whole and rational numbers; density of rationals (5). Axioms of real numbers (2). Overview of set theory (4).
The intuitive concept of function (6) and Cartesian representation (7).
Injective, surjective, bijective and invertible functions. Monotonic functions (8).
Absolute value (9). The principle of induction (13).
2) Complements to real numbers
Maximum, minimum, supremum, infimum.
7) Succession limits
Definition and first properties (56.57).
Limited successions (58). Operations with limits (59).
Indefinite forms (60).
Comparative theorems (61). Other properties of succession limits (62).
Notable limits (63). Monotone sequences, the number e (64).
Sequence going to infinity of increasing order (67).
8) Function limits. Continuous functions
Definition of limit and property (71,72,73).
Continuous functions (74). discontinuity (75).
Theorems on continuous functions (76).
9) Additions to the limits
The theorem on monotonic sequences (80).
Extracted successions; the Bolzano-Weierstrass theorem (81).
The Weierstrass theorem (82).
Continuity of monotonic functions and inverse functions (83).
10) Derivatives
Definition and physical meaning (88-89). Operations with derivatives (90).
Derivatives of compound functions and inverse functions (91).
Derivative of elementary functions (92).
Geometric meaning of the derivative: tangent line (93).
11) Applications of derivatives. Function study
Maximum and minimum relative. Fermat's theorem (95).
Theorems of Rolle and Lagrange (96).
Increasing, decreasing, convex and concave functions (97-98).
De l'Hopital theorem (99).
Study of the graph of a function (100).
Taylor's formula: first properties (101).
14) Integration according to Riemann
Definition (117). Properties of the defined integrals (118).
Uniform continuity. Cantor's theorem (119).
Integrability of continuous functions (120).
The theorems of the average (121).
15) Undefined integrals
The fundamental theorem of integral calculus (123).
Primitives (124). The indefinite integral (125). Integration by parts and by substitution
(126,127,128,129).
Improper integrals (132).
16) Taylor's formula
Rest of Peano (135).
Use of Taylor's formula in the calculation of limits (136).
17) Series
Numerical series (141).
Series with positive terms (142).
Geometric series and harmonic series (143.144).
Convergence criteria (145).
Alternate series (146).
Absolute convergence (147).
Taylor series (149).
Core Documentation
S. Lang, A First Course in Calculus, Springer Ed.Attendance
not compulsory but suggestedType of evaluation
written test with exercises and subsequent oral testFruizione: 20810231 ANALISI MATEMATICA I in Ingegneria meccanica L-9 R CANALE 2 NATALINI PIERPAOLO
Programme
real numbers; real functions of one real variable; function limits; differentiability; integral; series; Taylor's formula; complex numbers.Core Documentation
Calcolo differenziale. LaforgiaAnalisi Matematica 1. Marcellini-Sbordone.
Esercitazione di Analisi Matematica 1. Marcellini-Sbordone.
Attendance
optionalType of evaluation
written exam, intermedial examCanali
Programme
The numbers refer to the chapters and paragraphs of the textbook:Calcolo of P. Marcellini and C. Sbordone.
1) Real numbers and functions
Natural, whole and rational numbers; density of rationals (5). Axioms of real numbers (2). Overview of set theory (4).
The intuitive concept of function (6) and Cartesian representation (7).
Injective, surjective, bijective and invertible functions. Monotonic functions (8).
Absolute value (9). The principle of induction (13).
2) Complements to real numbers
Maximum, minimum, supremum, infimum.
7) Succession limits
Definition and first properties (56.57).
Limited successions (58). Operations with limits (59).
Indefinite forms (60).
Comparative theorems (61). Other properties of succession limits (62).
Notable limits (63). Monotone sequences, the number e (64).
Sequence going to infinity of increasing order (67).
8) Function limits. Continuous functions
Definition of limit and property (71,72,73).
Continuous functions (74). discontinuity (75).
Theorems on continuous functions (76).
9) Additions to the limits
The theorem on monotonic sequences (80).
Extracted successions; the Bolzano-Weierstrass theorem (81).
The Weierstrass theorem (82).
Continuity of monotonic functions and inverse functions (83).
10) Derivatives
Definition and physical meaning (88-89). Operations with derivatives (90).
Derivatives of compound functions and inverse functions (91).
Derivative of elementary functions (92).
Geometric meaning of the derivative: tangent line (93).
11) Applications of derivatives. Function study
Maximum and minimum relative. Fermat's theorem (95).
Theorems of Rolle and Lagrange (96).
Increasing, decreasing, convex and concave functions (97-98).
De l'Hopital theorem (99).
Study of the graph of a function (100).
Taylor's formula: first properties (101).
14) Integration according to Riemann
Definition (117). Properties of the defined integrals (118).
Uniform continuity. Cantor's theorem (119).
Integrability of continuous functions (120).
The theorems of the average (121).
15) Undefined integrals
The fundamental theorem of integral calculus (123).
Primitives (124). The indefinite integral (125). Integration by parts and by substitution
(126,127,128,129).
Improper integrals (132).
16) Taylor's formula
Rest of Peano (135).
Use of Taylor's formula in the calculation of limits (136).
17) Series
Numerical series (141).
Series with positive terms (142).
Geometric series and harmonic series (143.144).
Convergence criteria (145).
Alternate series (146).
Absolute convergence (147).
Taylor series (149).
Core Documentation
S. Lang, A First Course in Calculus, Springer Ed.Attendance
not compulsory but suggestedType of evaluation
written test with exercises and subsequent oral testFruizione: 20810231 ANALISI MATEMATICA I in Ingegneria meccanica L-9 R CANALE 2 NATALINI PIERPAOLO
Programme
real numbers; real functions of one real variable; function limits; differentiability; integral; series; Taylor's formula; complex numbers.Core Documentation
Calcolo differenziale. LaforgiaAnalisi Matematica 1. Marcellini-Sbordone.
Esercitazione di Analisi Matematica 1. Marcellini-Sbordone.
Attendance
optionalType of evaluation
written exam, intermedial exam