20810211 - Algorithms for big data

In many application contexts huge volumes of data are produced which are
used in the economic-financial, political, social and even institutional
fields. Often the data is stored in huge distributed clouds and is
sometimes generated according to a continuous flow, so large as to make
complete storage unfeasible. In many cases the data pertains to entities
in close relationship with each other and gives rise to massive networks
of connections. Familiar examples for such networks are biological and
social networks, distribution networks, and the Web graph. Furthermore,
the fact that the data is stored in systems managed by third parties
poses integrity problems, which have not been considered in the
classical IT literature in terms of both their type and scale.

This scenario poses unprecedented algorithmic challenges, which are
being considered by a vast audience of researchers. In the last decade,
this effort has produced many innovations on both the methodological and
technological level. This course aims at transferring to the students
some of the most important methodological tools originated from the
research on Big Data algorithms. These methodological tools are
presented within challenging application contexts.

Curriculum

teacher profile | teaching materials

Programme

1) Algorithms for data streams
- Approximate counting
- Majority problems
- Sampling and reservoir sampling
- Bloom filters
- Frequent itemsets
2) Sub-linear algorithms
- Diameter approximation
- Property testing
3) Clustering
4) Algorithms and data structures for quantitative features analysis
- 1d-,2d-,3d-range queries
- Skyline (pareto frontier), near-neighbor search, voronoi diagrams
5) Dimensionality reduction
6) Algorithms for the decomposition of complex networks
- Decomposition into k-connected components
- Decomposition into k-cores, maximal cliques, maximal k-plexes
7) Distributed Hash Tables, Consistent Hashing
8) Integrity of large data sets, consistency in distributed systems, CAP/PACELC theorems and their impact on NoSQL databases



Core Documentation

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Cambridge University Press
http://www.mmds.org/


Type of delivery of the course

Lectures

Type of evaluation

The exam consists of a project that will be assigned during the course and of an oral examination.

teacher profile | teaching materials

Programme

1) Algorithms for data streams
- Approximate counting
- Majority problems
- Sampling and reservoir sampling
- Bloom filters
- Frequent itemsets
2) Sub-linear algorithms
- Diameter approximation
- Property testing
3) Clustering
4) Algorithms and data structures for quantitative features analysis
- 1d-,2d-,3d-range queries
- Skyline (pareto frontier), near-neighbor search, voronoi diagrams
5) Dimensionality reduction
6) Algorithms for the decomposition of complex networks
- Decomposition into k-connected components
- Decomposition into k-cores, maximal cliques, maximal k-plexes
7) Distributed Hash Tables, Consistent Hashing
8) Integrity of large data sets, consistency in distributed systems, CAP/PACELC theorems and their impact on NoSQL databases



Core Documentation

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Cambridge University Press
http://www.mmds.org/


Type of delivery of the course

lectures

Type of evaluation

The exam consists of a project that will be assigned during the course and of an oral examination. Attention please: during the COVID-19 lockdown periods the exam will be an oral test in accordance with Art.1 of Decreto Rettorale n°. 703 (5 May 2020). The oral test will be fundamental for passing the exam.

teacher profile | teaching materials

Programme

1) Algorithms for data streams
- Approximate counting
- Majority problems
- Sampling and reservoir sampling
- Bloom filters
- Frequent itemsets
2) Sub-linear algorithms
- Diameter approximation
- Property testing
3) Clustering
4) Algorithms and data structures for quantitative features analysis
- 1d-,2d-,3d-range queries
- Skyline (pareto frontier), near-neighbor search, voronoi diagrams
5) Dimensionality reduction
6) Algorithms for the decomposition of complex networks
- Decomposition into k-connected components
- Decomposition into k-cores, maximal cliques, maximal k-plexes
7) Distributed Hash Tables, Consistent Hashing
8) Integrity of large data sets, consistency in distributed systems, CAP/PACELC theorems and their impact on NoSQL databases



Core Documentation

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Cambridge University Press
http://www.mmds.org/


Type of delivery of the course

lectures

Type of evaluation

The exam consists of a project that will be assigned during the course and of an oral examination.

teacher profile | teaching materials

Programme

1) Algorithms for data streams
- Approximate counting
- Majority problems
- Sampling and reservoir sampling
- Bloom filters
- Frequent itemsets
2) Sub-linear algorithms
- Diameter approximation
- Property testing
3) Clustering
4) Algorithms and data structures for quantitative features analysis
- 1d-,2d-,3d-range queries
- Skyline (pareto frontier), near-neighbor search, voronoi diagrams
5) Dimensionality reduction
6) Algorithms for the decomposition of complex networks
- Decomposition into k-connected components
- Decomposition into k-cores, maximal cliques, maximal k-plexes
7) Distributed Hash Tables, Consistent Hashing
8) Integrity of large data sets, consistency in distributed systems, CAP/PACELC theorems and their impact on NoSQL databases


Core Documentation

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Cambridge University Press
http://www.mmds.org/

Type of delivery of the course

Lectures Should the COVID-19 emergency last through the year, the teaching activities will be modified accordingly. In particular, lectures will be delivered via Microsoft Teams, they will be recorded and made available on the platform moodle1.ing.uniroma3.it.

Type of evaluation

The exam consists of a project that will be assigned during the course and of an oral examination. Should the COVID-19 emergency last through the year, the teaching activities will be modified accordingly. In particular, the exam will comply with art.1 del Decreto Rettorale n°. 703 del 5 maggio 2020. Specifically, the exam will consist of a written test and of an oral examination, both done by electronic means. The oral examination is decisive for the final evaluation.

teacher profile | teaching materials

Programme

1) Algorithms for data streams
- Approximate counting
- Majority problems
- Sampling and reservoir sampling
- Bloom filters
- Frequent itemsets
- Number of distinct elements
2) Dimensionality reduction
-Johnson–Lindenstrauss lemma
Embedding metric spaces with low distortion
3) Algorithms and data structures for quantitative features analysis
- orthogonal range searching (kd-trees and range trees)
- nearest neighbour search, k-nearest neighbour search
- fractional cascading and simplex range search
4) Algorithms for the decomposition of complex networks
- Decomposition into k-connected components
- Decomposition into k-cores, maximal cliques, maximal k-plexes
5) NoSQL internals: Distributed Hash Tables, chord, consistent hashing
6) Scalable security: integrity of big data sets in the cloud, consistency and scalability issues with authenticated data structures, pipelining, blockchain scalability trilemma.


Core Documentation

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Cambridge University Press
http://www.mmds.org/


Reference Bibliography

Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Cambridge University Press http://www.mmds.org/

Type of delivery of the course

Traditional

Attendance

Non-mandatory

Type of evaluation

Written test, project evaluation. The written test can be replaced by partial in-itinere tests.

teacher profile | teaching materials

Programme

1) Algorithms for data streams
- Approximate counting
- Majority problems
- Sampling and reservoir sampling
- Bloom filters
- Frequent itemsets
2) Sub-linear algorithms
- Diameter approximation
- Property testing
3) Clustering
4) Algorithms and data structures for quantitative features analysis
- 1d-,2d-,3d-range queries
- Skyline (pareto frontier), near-neighbor search, voronoi diagrams
5) Dimensionality reduction
6) Algorithms for the decomposition of complex networks
- Decomposition into k-connected components
- Decomposition into k-cores, maximal cliques, maximal k-plexes
7) Distributed Hash Tables, Consistent Hashing
8) Integrity of large data sets, consistency in distributed systems, CAP/PACELC theorems and their impact on NoSQL databases



Core Documentation

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Cambridge University Press
http://www.mmds.org/


Type of delivery of the course

Lectures

Type of evaluation

The exam consists of a project that will be assigned during the course and of an oral examination.

teacher profile | teaching materials

Programme

1) Algorithms for data streams
- Approximate counting
- Majority problems
- Sampling and reservoir sampling
- Bloom filters
- Frequent itemsets
2) Sub-linear algorithms
- Diameter approximation
- Property testing
3) Clustering
4) Algorithms and data structures for quantitative features analysis
- 1d-,2d-,3d-range queries
- Skyline (pareto frontier), near-neighbor search, voronoi diagrams
5) Dimensionality reduction
6) Algorithms for the decomposition of complex networks
- Decomposition into k-connected components
- Decomposition into k-cores, maximal cliques, maximal k-plexes
7) Distributed Hash Tables, Consistent Hashing
8) Integrity of large data sets, consistency in distributed systems, CAP/PACELC theorems and their impact on NoSQL databases



Core Documentation

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Cambridge University Press
http://www.mmds.org/


Type of delivery of the course

lectures

Type of evaluation

The exam consists of a project that will be assigned during the course and of an oral examination. Attention please: during the COVID-19 lockdown periods the exam will be an oral test in accordance with Art.1 of Decreto Rettorale n°. 703 (5 May 2020). The oral test will be fundamental for passing the exam.

teacher profile | teaching materials

Programme

1) Algorithms for data streams
- Approximate counting
- Majority problems
- Sampling and reservoir sampling
- Bloom filters
- Frequent itemsets
2) Sub-linear algorithms
- Diameter approximation
- Property testing
3) Clustering
4) Algorithms and data structures for quantitative features analysis
- 1d-,2d-,3d-range queries
- Skyline (pareto frontier), near-neighbor search, voronoi diagrams
5) Dimensionality reduction
6) Algorithms for the decomposition of complex networks
- Decomposition into k-connected components
- Decomposition into k-cores, maximal cliques, maximal k-plexes
7) Distributed Hash Tables, Consistent Hashing
8) Integrity of large data sets, consistency in distributed systems, CAP/PACELC theorems and their impact on NoSQL databases



Core Documentation

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Cambridge University Press
http://www.mmds.org/


Type of delivery of the course

lectures

Type of evaluation

The exam consists of a project that will be assigned during the course and of an oral examination.

teacher profile | teaching materials

Programme

1) Algorithms for data streams
- Approximate counting
- Majority problems
- Sampling and reservoir sampling
- Bloom filters
- Frequent itemsets
2) Sub-linear algorithms
- Diameter approximation
- Property testing
3) Clustering
4) Algorithms and data structures for quantitative features analysis
- 1d-,2d-,3d-range queries
- Skyline (pareto frontier), near-neighbor search, voronoi diagrams
5) Dimensionality reduction
6) Algorithms for the decomposition of complex networks
- Decomposition into k-connected components
- Decomposition into k-cores, maximal cliques, maximal k-plexes
7) Distributed Hash Tables, Consistent Hashing
8) Integrity of large data sets, consistency in distributed systems, CAP/PACELC theorems and their impact on NoSQL databases


Core Documentation

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Cambridge University Press
http://www.mmds.org/

Type of delivery of the course

Lectures Should the COVID-19 emergency last through the year, the teaching activities will be modified accordingly. In particular, lectures will be delivered via Microsoft Teams, they will be recorded and made available on the platform moodle1.ing.uniroma3.it.

Type of evaluation

The exam consists of a project that will be assigned during the course and of an oral examination. Should the COVID-19 emergency last through the year, the teaching activities will be modified accordingly. In particular, the exam will comply with art.1 del Decreto Rettorale n°. 703 del 5 maggio 2020. Specifically, the exam will consist of a written test and of an oral examination, both done by electronic means. The oral examination is decisive for the final evaluation.

teacher profile | teaching materials

Programme

1) Algorithms for data streams
- Approximate counting
- Majority problems
- Sampling and reservoir sampling
- Bloom filters
- Frequent itemsets
- Number of distinct elements
2) Dimensionality reduction
-Johnson–Lindenstrauss lemma
Embedding metric spaces with low distortion
3) Algorithms and data structures for quantitative features analysis
- orthogonal range searching (kd-trees and range trees)
- nearest neighbour search, k-nearest neighbour search
- fractional cascading and simplex range search
4) Algorithms for the decomposition of complex networks
- Decomposition into k-connected components
- Decomposition into k-cores, maximal cliques, maximal k-plexes
5) NoSQL internals: Distributed Hash Tables, chord, consistent hashing
6) Scalable security: integrity of big data sets in the cloud, consistency and scalability issues with authenticated data structures, pipelining, blockchain scalability trilemma.


Core Documentation

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Cambridge University Press
http://www.mmds.org/


Reference Bibliography

Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Cambridge University Press http://www.mmds.org/

Type of delivery of the course

Traditional

Attendance

Non-mandatory

Type of evaluation

Written test, project evaluation. The written test can be replaced by partial in-itinere tests.