20402178 - STRUCTURAL GEOLOGY

The course aims to provide tools and methods for description, analysis and interpretation of ductile and brittle deformation processes affecting a volume of rock. The goal is to reconstruct complex deformation sequences for interpreting the regional geological evolution. The aim of the course is also to present the structures and styles associated with regional tectonics.

Curriculum

teacher profile | teaching materials

Programme

DEFORMATION AND STRAIN; COAXIAL AND NON-COAXIAL DEFORMATION; FINITE AND INCREMENTAL DEFORMATION; HETEROGENEOUS AND HOMOGENEOUS STRAIN; THE ELLIPSOID OF STRAIN; STRAIN STATES AND QUANTIFICATION OF THE FINITE STRAIN. THE STRESS TENSOR AND THE PRINCIPAL AXES OF STRESS; MOHR'S CIRCLES. PRINCIPLES OF RHEOLOGY: DUCTILE AND BRITTLE DEFORMATION; DEFORMATION MECHANISMS; CONSTITUTIVE LAWS AND STRESS-STRAIN RELATIONSHIPS; NEWTONIAN AND NON-NEWTONIAN BEHAVIOUR; CREEP PROCESS IN GEOLOGY; RECOVERY AND RECRYSTALLISATION (STATIC AND DYNAMIC RECRYSTALLISATION PROCESSES); DEFORMATION MAPS FOR MATERIALS OF GEOLOGICAL INTEREST; RHEOLOGY OF THE OCEANIC AND CONTINENTAL LITHOSPHERE. DEFORMATION AND BRITTLE SHEARING: MOHR-COULOMB FAILURE CRITERION; THE GRIFFITH CRITERION. ANDERSONIAN FAULTS: DYNAMIC ANALYSIS AND CLASSIFICATION (STRESS INVERSION). JOINTS AND VEINS. STRUCTURE OF A FAULT ZONE: FAULT CORE AND DAMAGE ZONES; CLASSIFICATION OF FAULT ROCKS. GROWTH OF FAULTS AND THEIR SPATIAL ORGANIZATION; LATERAL PROPAGATION OF FAULTS, OVERLAP, LINKAGE AND ASSOCIATED FRACTURING; KINEMATIC INDICATORS ON FAULT SURFACES; RIEDEL SHEARS (SYNTHETIC AND ANTITHETIC). FAULTS AND EARTHQUAKES: THE TOOLS OF STRUCTURAL GEOLOGY: THE STUDY OF ACTIVE AND EXHUMED SEISMOGENIC FAULTS (PSEUDOTACHYLYTES). DUCTILE DEFORMATION: ROCK FABRICS, PLANO-LINEAR STRUCTURES (FOLIATION AND LINEATION), S; L; S-L TECTONITES AND THEIR TECTONICS SIGNIFICANCE. FOLDING AND ASSOCIATED STRUCTURES (TYPES AND CLASSIFICATION; INTERFERENCE AND OVERPRINTING CRITERIA). DEFORMATION AND METAMORPHISM: BLASTESIS-DEFORMATION RELATIONSHIPS (MESO-AND MICRO-SCALE); DUCTILE SHEAR ZONES (MYLONITES) AND THEIR GEOLOGICAL SIGNIFICANCE, KINEMATIC CRITERIA (MESO-AND MICRO-SCALE). SHEAR ZONES AND FLUID CIRCULATION: FLUID-ROCK INTERACTION AND THE STRUCTURAL CONTROLS ON HYDROTHERMAL MINERALIZATION. STRUCTURES ASSOCIATION AT REGIONAL SCALE AND THE STYLES OF REGIONAL TECTONICS. EXTENSIONAL TECTONICS (RIFTING): GEOMETRY OF RIFTING; MODELS PURE- AND SIMPLE-SHEAR MODELS: REGIONAL EXAMPLES; RHEOLOGY OF THE LITHOSPHERE AND TYPES OF RIFTING; THE RIFT-DRIFT TRANSITION; RIFTING AND SEDIMENTATION: INTERACTIONS BETWEEN DEFORMATION, SEDIMENTATION AND EROSION. COMPRESSIONAL TECTONICS: "SUBDUCTION FACTORY" AND OROGENY; DYNAMICS OF OROGENIC SYSTEMS; SUBDUCTION OROGENS, COLLISION AND SUBDUCTION-ACCRETION OROGENS: STRUCTURAL STYLES, THERMO-BARIC REGIMES AND TECTONIC EVOLUTION; THE OROGENIC WEDGE AND ITS DYNAMICS (EVOLUTION AND STYLES OF THRUST-AND-FOLD BELTS). STRIKE-SLIP TECTONICS: STRUCTURAL CHARACTERISTICS AND ASSOCIATED STRUCTURES; STRIKE-SLIP AND TRANSFORM FAULTS; STRIKE-SLIP INTRAPLATE TECTONICS: REGIONAL EXAMPLES. STRUCTURAL GEOLOGY AND ITS APPLICATIONS: ORE DEPOSITS, GEOTHERMAL RESERVOIRS AND GEOTECHNICAL PROBLEMS (EXAMPLES).

DURING THE COURSE PRACTICAL EXERCISES WILL BE CARRIED OUT FOCUSED ON THE ANALYSIS AND INTERPRETATION OF STRUCTURAL DATA.
AT THE END OF THE COURSE, A WEEK-LONG CAMP IS SCHEDULED AIMED TO FIX THE BASIC CONCEPTS THROUGH ANALYSIS OF GEOLOGICAL STRUCTURES IN THE FIELD .


Core Documentation

1) G. DAVIS, S. REYNOLDS, "STRUCTURAL GEOLOGY OF ROCKS AND REGIONS", WILEY, 1996.
2) H. FOSSEN, STRUCTURAL gEOLOGY", CAMBRIDEGE UNIV. PRESS (2ND ED.), 2016
3) B. A. VAN DER PLUIJM, S. MARSHAK. W.W, "EARTH STRUCTURE" (2ND ED.), NORTON, 2004.
4) C. W. PASSCHIER, R. A. J. TROUW, "MICROTECTONICS” (2ND ED.), SPRINGER, 2006.

Complementary readings
-N. PRICE, J. COSGROVE, "ANALYSIS OF GEOLOGICAL STRUCTURES", CAMBRIDGE UNIVERSITY PRESS, 1990.
-R. TWISS, E. M: MOORES, "STRUCTURAL GEOLOGY" (2ND ED.), FREEMAN, 2007.
-R. H. GROSHONG, "3-D STRUCTURAL GEOLOGY: A PRACTICAL GUIDE TO SURFACE AND SUBSURFACE MAP INTERPRETATION" (2ND ED.), SPRINGER, 2006.
-J. SUPPE "PRINCIPLES OF STRUCTURAL GEOLOGY", PRENTICE-HALL, 1985.
-W. BURBANK, R. S. ANDERSON "TECTONIC GEOMORPHOLOGY", BLACKWELL, 2005.


Type of delivery of the course

The teaching will be given through lectures, laboratory exercises and field training

Type of evaluation

The oral exam focuses on the entire teaching program. Grades will be computed based on this relative weighting scheme:(i) Oral exam on the base of the program presented during the course, 65%; (ii) discussion on the field activity, 25%; (iii) Class participation, 10%

teacher profile | teaching materials

Programme

DEFORMATION AND STRAIN; COAXIAL AND NON-COAXIAL DEFORMATION; FINITE AND INCREMENTAL DEFORMATION; HETEROGENEOUS AND HOMOGENEOUS STRAIN; THE ELLIPSOID OF STRAIN; STRAIN STATES AND QUANTIFICATION OF THE FINITE STRAIN. THE STRESS TENSOR AND THE PRINCIPAL AXES OF STRESS; MOHR'S CIRCLES. PRINCIPLES OF RHEOLOGY: DUCTILE AND BRITTLE DEFORMATION; DEFORMATION MECHANISMS; CONSTITUTIVE LAWS AND STRESS-STRAIN RELATIONSHIPS; NEWTONIAN AND NON-NEWTONIAN BEHAVIOUR; CREEP PROCESS IN GEOLOGY; RECOVERY AND RECRYSTALLISATION (STATIC AND DYNAMIC RECRYSTALLISATION PROCESSES); DEFORMATION MAPS FOR MATERIALS OF GEOLOGICAL INTEREST; RHEOLOGY OF THE OCEANIC AND CONTINENTAL LITHOSPHERE. DEFORMATION AND BRITTLE SHEARING: MOHR-COULOMB FAILURE CRITERION; THE GRIFFITH CRITERION. ANDERSONIAN FAULTS: DYNAMIC ANALYSIS AND CLASSIFICATION (STRESS INVERSION). JOINTS AND VEINS. STRUCTURE OF A FAULT ZONE: FAULT CORE AND DAMAGE ZONES; CLASSIFICATION OF FAULT ROCKS. GROWTH OF FAULTS AND THEIR SPATIAL ORGANIZATION; LATERAL PROPAGATION OF FAULTS, OVERLAP, LINKAGE AND ASSOCIATED FRACTURING; KINEMATIC INDICATORS ON FAULT SURFACES; RIEDEL SHEARS (SYNTHETIC AND ANTITHETIC). FAULTS AND EARTHQUAKES: THE TOOLS OF STRUCTURAL GEOLOGY: THE STUDY OF ACTIVE AND EXHUMED SEISMOGENIC FAULTS (PSEUDOTACHYLYTES). DUCTILE DEFORMATION: ROCK FABRICS, PLANO-LINEAR STRUCTURES (FOLIATION AND LINEATION), S; L; S-L TECTONITES AND THEIR TECTONICS SIGNIFICANCE. FOLDING AND ASSOCIATED STRUCTURES (TYPES AND CLASSIFICATION; INTERFERENCE AND OVERPRINTING CRITERIA). DEFORMATION AND METAMORPHISM: BLASTESIS-DEFORMATION RELATIONSHIPS (MESO-AND MICRO-SCALE); DUCTILE SHEAR ZONES (MYLONITES) AND THEIR GEOLOGICAL SIGNIFICANCE, KINEMATIC CRITERIA (MESO-AND MICRO-SCALE). SHEAR ZONES AND FLUID CIRCULATION: FLUID-ROCK INTERACTION AND THE STRUCTURAL CONTROLS ON HYDROTHERMAL MINERALIZATION. STRUCTURES ASSOCIATION AT REGIONAL SCALE AND THE STYLES OF REGIONAL TECTONICS. EXTENSIONAL TECTONICS (RIFTING): GEOMETRY OF RIFTING; MODELS PURE- AND SIMPLE-SHEAR MODELS: REGIONAL EXAMPLES; RHEOLOGY OF THE LITHOSPHERE AND TYPES OF RIFTING; THE RIFT-DRIFT TRANSITION; RIFTING AND SEDIMENTATION: INTERACTIONS BETWEEN DEFORMATION, SEDIMENTATION AND EROSION. COMPRESSIONAL TECTONICS: "SUBDUCTION FACTORY" AND OROGENY; DYNAMICS OF OROGENIC SYSTEMS; SUBDUCTION OROGENS, COLLISION AND SUBDUCTION-ACCRETION OROGENS: STRUCTURAL STYLES, THERMO-BARIC REGIMES AND TECTONIC EVOLUTION; THE OROGENIC WEDGE AND ITS DYNAMICS (EVOLUTION AND STYLES OF THRUST-AND-FOLD BELTS). STRIKE-SLIP TECTONICS: STRUCTURAL CHARACTERISTICS AND ASSOCIATED STRUCTURES; STRIKE-SLIP AND TRANSFORM FAULTS; STRIKE-SLIP INTRAPLATE TECTONICS: REGIONAL EXAMPLES. STRUCTURAL GEOLOGY AND ITS APPLICATIONS: ORE DEPOSITS, GEOTHERMAL RESERVOIRS AND GEOTECHNICAL PROBLEMS (EXAMPLES).
DURING THE COURSE PRACTICAL EXERCISES WILL BE CARRIED OUT FOCUSED ON THE ANALYSIS AND INTERPRETATION OF STRUCTURAL DATA.
AT THE END OF THE COURSE, A WEEK-LONG CAMP IS SCHEDULED AIMED TO FIX THE BASIC CONCEPTS THOUGH ANALYSIS OF GEOLOGICAL STRUCTURES IN THE FIELD .

Core Documentation

THE BASIC READINGS:
-G. DAVIS, S. REYNOLDS, "STRUCTURAL GEOLOGY OF ROCKS AND REGIONS", WILEY, 1996.
-B. A. VAN DER PLUIJM, S. MARSHAK. W.W, "EARTH STRUCTURE" (2ND ED.), NORTON, 2004.
-C. W. PASSCHIER, R. A. J. TROUW, "MICROTECTONICS” (2ND ED.), SPRINGER, 2006.
-A. FOSSEN- STRUCTURAL GEOLOGY (2ND ED.), CAMBRIDGE, 2016


Reference Bibliography

COMPLEMENTARY READINGS: -N. PRICE, J. COSGROVE, "ANALYSIS OF GEOLOGICAL STRUCTURES", CAMBRIDGE UNIVERSITY PRESS, 1990. -R. TWISS, E. M: MOORES, "STRUCTURAL GEOLOGY" (2ND ED.), FREEMAN, 2007. -R. H. GROSHONG, "3-D STRUCTURAL GEOLOGY: A PRACTICAL GUIDE TO SURFACE AND SUBSURFACE MAP INTERPRETATION" (2ND ED.), SPRINGER, 2006. -J. SUPPE "PRINCIPLES OF STRUCTURAL GEOLOGY", PRENTICE-HALL, 1985. -W. BURBANK, R. S. ANDERSON "TECTONIC GEOMORPHOLOGY", BLACKWELL, 2005.

Type of delivery of the course

The teaching will be given through lectures, laboratory exercises and field training

Type of evaluation

The oral exam focuses on the entire teaching program. Grades will be computed based on this relative weighting scheme:(i) Oral exam on the base of the program presented during the course, 65%; (ii) discussion on the field activity, 25%; (iii) Class participation, 10%

teacher profile | teaching materials

Programme

DEFORMATION AND STRAIN; COAXIAL AND NON-COAXIAL DEFORMATION; FINITE AND INCREMENTAL DEFORMATION; HETEROGENEOUS AND HOMOGENEOUS STRAIN; THE ELLIPSOID OF STRAIN; STRAIN STATES AND QUANTIFICATION OF THE FINITE STRAIN. THE STRESS TENSOR AND THE PRINCIPAL AXES OF STRESS; MOHR'S CIRCLES. PRINCIPLES OF RHEOLOGY: DUCTILE AND BRITTLE DEFORMATION; DEFORMATION MECHANISMS; CONSTITUTIVE LAWS AND STRESS-STRAIN RELATIONSHIPS; NEWTONIAN AND NON-NEWTONIAN BEHAVIOUR; CREEP PROCESS IN GEOLOGY; RECOVERY AND RECRYSTALLISATION (STATIC AND DYNAMIC RECRYSTALLISATION PROCESSES); DEFORMATION MAPS FOR MATERIALS OF GEOLOGICAL INTEREST; RHEOLOGY OF THE OCEANIC AND CONTINENTAL LITHOSPHERE. DEFORMATION AND BRITTLE SHEARING: MOHR-COULOMB FAILURE CRITERION; THE GRIFFITH CRITERION. ANDERSONIAN FAULTS: DYNAMIC ANALYSIS AND CLASSIFICATION (STRESS INVERSION). JOINTS AND VEINS. STRUCTURE OF A FAULT ZONE: FAULT CORE AND DAMAGE ZONES; CLASSIFICATION OF FAULT ROCKS. GROWTH OF FAULTS AND THEIR SPATIAL ORGANIZATION; LATERAL PROPAGATION OF FAULTS, OVERLAP, LINKAGE AND ASSOCIATED FRACTURING; KINEMATIC INDICATORS ON FAULT SURFACES; RIEDEL SHEARS (SYNTHETIC AND ANTITHETIC). FAULTS AND EARTHQUAKES: THE TOOLS OF STRUCTURAL GEOLOGY: THE STUDY OF ACTIVE AND EXHUMED SEISMOGENIC FAULTS (PSEUDOTACHYLYTES). DUCTILE DEFORMATION: ROCK FABRICS, PLANO-LINEAR STRUCTURES (FOLIATION AND LINEATION), S; L; S-L TECTONITES AND THEIR TECTONICS SIGNIFICANCE. FOLDING AND ASSOCIATED STRUCTURES (TYPES AND CLASSIFICATION; INTERFERENCE AND OVERPRINTING CRITERIA). DEFORMATION AND METAMORPHISM: BLASTESIS-DEFORMATION RELATIONSHIPS (MESO-AND MICRO-SCALE); DUCTILE SHEAR ZONES (MYLONITES) AND THEIR GEOLOGICAL SIGNIFICANCE, KINEMATIC CRITERIA (MESO-AND MICRO-SCALE). SHEAR ZONES AND FLUID CIRCULATION: FLUID-ROCK INTERACTION AND THE STRUCTURAL CONTROLS ON HYDROTHERMAL MINERALIZATION. STRUCTURES ASSOCIATION AT REGIONAL SCALE AND THE STYLES OF REGIONAL TECTONICS. EXTENSIONAL TECTONICS (RIFTING): GEOMETRY OF RIFTING; MODELS PURE- AND SIMPLE-SHEAR MODELS: REGIONAL EXAMPLES; RHEOLOGY OF THE LITHOSPHERE AND TYPES OF RIFTING; THE RIFT-DRIFT TRANSITION; RIFTING AND SEDIMENTATION: INTERACTIONS BETWEEN DEFORMATION, SEDIMENTATION AND EROSION. COMPRESSIONAL TECTONICS: "SUBDUCTION FACTORY" AND OROGENY; DYNAMICS OF OROGENIC SYSTEMS; SUBDUCTION OROGENS, COLLISION AND SUBDUCTION-ACCRETION OROGENS: STRUCTURAL STYLES, THERMO-BARIC REGIMES AND TECTONIC EVOLUTION; THE OROGENIC WEDGE AND ITS DYNAMICS (EVOLUTION AND STYLES OF THRUST-AND-FOLD BELTS). STRIKE-SLIP TECTONICS: STRUCTURAL CHARACTERISTICS AND ASSOCIATED STRUCTURES; STRIKE-SLIP AND TRANSFORM FAULTS; STRIKE-SLIP INTRAPLATE TECTONICS: REGIONAL EXAMPLES. STRUCTURAL GEOLOGY AND ITS APPLICATIONS: ORE DEPOSITS, GEOTHERMAL RESERVOIRS AND GEOTECHNICAL PROBLEMS (EXAMPLES).

DURING THE COURSE PRACTICAL EXERCISES WILL BE CARRIED OUT FOCUSED ON THE ANALYSIS AND INTERPRETATION OF STRUCTURAL DATA.
AT THE END OF THE COURSE, A WEEK-LONG CAMP IS SCHEDULED AIMED TO FIX THE BASIC CONCEPTS THROUGH ANALYSIS OF GEOLOGICAL STRUCTURES IN THE FIELD .


Core Documentation

1) G. DAVIS, S. REYNOLDS, "STRUCTURAL GEOLOGY OF ROCKS AND REGIONS", WILEY, 1996.
2) H. FOSSEN, STRUCTURAL gEOLOGY", CAMBRIDEGE UNIV. PRESS (2ND ED.), 2016
3) B. A. VAN DER PLUIJM, S. MARSHAK. W.W, "EARTH STRUCTURE" (2ND ED.), NORTON, 2004.
4) C. W. PASSCHIER, R. A. J. TROUW, "MICROTECTONICS” (2ND ED.), SPRINGER, 2006.

Complementary readings
-N. PRICE, J. COSGROVE, "ANALYSIS OF GEOLOGICAL STRUCTURES", CAMBRIDGE UNIVERSITY PRESS, 1990.
-R. TWISS, E. M: MOORES, "STRUCTURAL GEOLOGY" (2ND ED.), FREEMAN, 2007.
-R. H. GROSHONG, "3-D STRUCTURAL GEOLOGY: A PRACTICAL GUIDE TO SURFACE AND SUBSURFACE MAP INTERPRETATION" (2ND ED.), SPRINGER, 2006.
-J. SUPPE "PRINCIPLES OF STRUCTURAL GEOLOGY", PRENTICE-HALL, 1985.
-W. BURBANK, R. S. ANDERSON "TECTONIC GEOMORPHOLOGY", BLACKWELL, 2005.


Type of delivery of the course

The teaching will be given through lectures, laboratory exercises and field training

Type of evaluation

The oral exam focuses on the entire teaching program. Grades will be computed based on this relative weighting scheme:(i) Oral exam on the base of the program presented during the course, 65%; (ii) discussion on the field activity, 25%; (iii) Class participation, 10%

teacher profile | teaching materials

Programme

DEFORMATION AND STRAIN; COAXIAL AND NON-COAXIAL DEFORMATION; FINITE AND INCREMENTAL DEFORMATION; HETEROGENEOUS AND HOMOGENEOUS STRAIN; THE ELLIPSOID OF STRAIN; STRAIN STATES AND QUANTIFICATION OF THE FINITE STRAIN. THE STRESS TENSOR AND THE PRINCIPAL AXES OF STRESS; MOHR'S CIRCLES. PRINCIPLES OF RHEOLOGY: DUCTILE AND BRITTLE DEFORMATION; DEFORMATION MECHANISMS; CONSTITUTIVE LAWS AND STRESS-STRAIN RELATIONSHIPS; NEWTONIAN AND NON-NEWTONIAN BEHAVIOUR; CREEP PROCESS IN GEOLOGY; RECOVERY AND RECRYSTALLISATION (STATIC AND DYNAMIC RECRYSTALLISATION PROCESSES); DEFORMATION MAPS FOR MATERIALS OF GEOLOGICAL INTEREST; RHEOLOGY OF THE OCEANIC AND CONTINENTAL LITHOSPHERE. DEFORMATION AND BRITTLE SHEARING: MOHR-COULOMB FAILURE CRITERION; THE GRIFFITH CRITERION. ANDERSONIAN FAULTS: DYNAMIC ANALYSIS AND CLASSIFICATION (STRESS INVERSION). JOINTS AND VEINS. STRUCTURE OF A FAULT ZONE: FAULT CORE AND DAMAGE ZONES; CLASSIFICATION OF FAULT ROCKS. GROWTH OF FAULTS AND THEIR SPATIAL ORGANIZATION; LATERAL PROPAGATION OF FAULTS, OVERLAP, LINKAGE AND ASSOCIATED FRACTURING; KINEMATIC INDICATORS ON FAULT SURFACES; RIEDEL SHEARS (SYNTHETIC AND ANTITHETIC). FAULTS AND EARTHQUAKES: THE TOOLS OF STRUCTURAL GEOLOGY: THE STUDY OF ACTIVE AND EXHUMED SEISMOGENIC FAULTS (PSEUDOTACHYLYTES). DUCTILE DEFORMATION: ROCK FABRICS, PLANO-LINEAR STRUCTURES (FOLIATION AND LINEATION), S; L; S-L TECTONITES AND THEIR TECTONICS SIGNIFICANCE. FOLDING AND ASSOCIATED STRUCTURES (TYPES AND CLASSIFICATION; INTERFERENCE AND OVERPRINTING CRITERIA). DEFORMATION AND METAMORPHISM: BLASTESIS-DEFORMATION RELATIONSHIPS (MESO-AND MICRO-SCALE); DUCTILE SHEAR ZONES (MYLONITES) AND THEIR GEOLOGICAL SIGNIFICANCE, KINEMATIC CRITERIA (MESO-AND MICRO-SCALE). SHEAR ZONES AND FLUID CIRCULATION: FLUID-ROCK INTERACTION AND THE STRUCTURAL CONTROLS ON HYDROTHERMAL MINERALIZATION. STRUCTURES ASSOCIATION AT REGIONAL SCALE AND THE STYLES OF REGIONAL TECTONICS. EXTENSIONAL TECTONICS (RIFTING): GEOMETRY OF RIFTING; MODELS PURE- AND SIMPLE-SHEAR MODELS: REGIONAL EXAMPLES; RHEOLOGY OF THE LITHOSPHERE AND TYPES OF RIFTING; THE RIFT-DRIFT TRANSITION; RIFTING AND SEDIMENTATION: INTERACTIONS BETWEEN DEFORMATION, SEDIMENTATION AND EROSION. COMPRESSIONAL TECTONICS: "SUBDUCTION FACTORY" AND OROGENY; DYNAMICS OF OROGENIC SYSTEMS; SUBDUCTION OROGENS, COLLISION AND SUBDUCTION-ACCRETION OROGENS: STRUCTURAL STYLES, THERMO-BARIC REGIMES AND TECTONIC EVOLUTION; THE OROGENIC WEDGE AND ITS DYNAMICS (EVOLUTION AND STYLES OF THRUST-AND-FOLD BELTS). STRIKE-SLIP TECTONICS: STRUCTURAL CHARACTERISTICS AND ASSOCIATED STRUCTURES; STRIKE-SLIP AND TRANSFORM FAULTS; STRIKE-SLIP INTRAPLATE TECTONICS: REGIONAL EXAMPLES. STRUCTURAL GEOLOGY AND ITS APPLICATIONS: ORE DEPOSITS, GEOTHERMAL RESERVOIRS AND GEOTECHNICAL PROBLEMS (EXAMPLES).
DURING THE COURSE PRACTICAL EXERCISES WILL BE CARRIED OUT FOCUSED ON THE ANALYSIS AND INTERPRETATION OF STRUCTURAL DATA.
AT THE END OF THE COURSE, A WEEK-LONG CAMP IS SCHEDULED AIMED TO FIX THE BASIC CONCEPTS THOUGH ANALYSIS OF GEOLOGICAL STRUCTURES IN THE FIELD .

Core Documentation

THE BASIC READINGS:
-G. DAVIS, S. REYNOLDS, "STRUCTURAL GEOLOGY OF ROCKS AND REGIONS", WILEY, 1996.
-B. A. VAN DER PLUIJM, S. MARSHAK. W.W, "EARTH STRUCTURE" (2ND ED.), NORTON, 2004.
-C. W. PASSCHIER, R. A. J. TROUW, "MICROTECTONICS” (2ND ED.), SPRINGER, 2006.
-A. FOSSEN- STRUCTURAL GEOLOGY (2ND ED.), CAMBRIDGE, 2016


Reference Bibliography

COMPLEMENTARY READINGS: -N. PRICE, J. COSGROVE, "ANALYSIS OF GEOLOGICAL STRUCTURES", CAMBRIDGE UNIVERSITY PRESS, 1990. -R. TWISS, E. M: MOORES, "STRUCTURAL GEOLOGY" (2ND ED.), FREEMAN, 2007. -R. H. GROSHONG, "3-D STRUCTURAL GEOLOGY: A PRACTICAL GUIDE TO SURFACE AND SUBSURFACE MAP INTERPRETATION" (2ND ED.), SPRINGER, 2006. -J. SUPPE "PRINCIPLES OF STRUCTURAL GEOLOGY", PRENTICE-HALL, 1985. -W. BURBANK, R. S. ANDERSON "TECTONIC GEOMORPHOLOGY", BLACKWELL, 2005.

Type of delivery of the course

The teaching will be given through lectures, laboratory exercises and field training

Type of evaluation

The oral exam focuses on the entire teaching program. Grades will be computed based on this relative weighting scheme:(i) Oral exam on the base of the program presented during the course, 65%; (ii) discussion on the field activity, 25%; (iii) Class participation, 10%

teacher profile | teaching materials

Programme

DEFORMATION AND STRAIN; COAXIAL AND NON-COAXIAL DEFORMATION; FINITE AND INCREMENTAL DEFORMATION; HETEROGENEOUS AND HOMOGENEOUS STRAIN; THE ELLIPSOID OF STRAIN; STRAIN STATES AND QUANTIFICATION OF THE FINITE STRAIN. THE STRESS TENSOR AND THE PRINCIPAL AXES OF STRESS; MOHR'S CIRCLES. PRINCIPLES OF RHEOLOGY: DUCTILE AND BRITTLE DEFORMATION; DEFORMATION MECHANISMS; CONSTITUTIVE LAWS AND STRESS-STRAIN RELATIONSHIPS; NEWTONIAN AND NON-NEWTONIAN BEHAVIOUR; CREEP PROCESS IN GEOLOGY; RECOVERY AND RECRYSTALLISATION (STATIC AND DYNAMIC RECRYSTALLISATION PROCESSES); DEFORMATION MAPS FOR MATERIALS OF GEOLOGICAL INTEREST; RHEOLOGY OF THE OCEANIC AND CONTINENTAL LITHOSPHERE. DEFORMATION AND BRITTLE SHEARING: MOHR-COULOMB FAILURE CRITERION; THE GRIFFITH CRITERION. ANDERSONIAN FAULTS: DYNAMIC ANALYSIS AND CLASSIFICATION (STRESS INVERSION). JOINTS AND VEINS. STRUCTURE OF A FAULT ZONE: FAULT CORE AND DAMAGE ZONES; CLASSIFICATION OF FAULT ROCKS. GROWTH OF FAULTS AND THEIR SPATIAL ORGANIZATION; LATERAL PROPAGATION OF FAULTS, OVERLAP, LINKAGE AND ASSOCIATED FRACTURING; KINEMATIC INDICATORS ON FAULT SURFACES; RIEDEL SHEARS (SYNTHETIC AND ANTITHETIC). FAULTS AND EARTHQUAKES: THE TOOLS OF STRUCTURAL GEOLOGY: THE STUDY OF ACTIVE AND EXHUMED SEISMOGENIC FAULTS (PSEUDOTACHYLYTES). DUCTILE DEFORMATION: ROCK FABRICS, PLANO-LINEAR STRUCTURES (FOLIATION AND LINEATION), S; L; S-L TECTONITES AND THEIR TECTONICS SIGNIFICANCE. FOLDING AND ASSOCIATED STRUCTURES (TYPES AND CLASSIFICATION; INTERFERENCE AND OVERPRINTING CRITERIA). DEFORMATION AND METAMORPHISM: BLASTESIS-DEFORMATION RELATIONSHIPS (MESO-AND MICRO-SCALE); DUCTILE SHEAR ZONES (MYLONITES) AND THEIR GEOLOGICAL SIGNIFICANCE, KINEMATIC CRITERIA (MESO-AND MICRO-SCALE). SHEAR ZONES AND FLUID CIRCULATION: FLUID-ROCK INTERACTION AND THE STRUCTURAL CONTROLS ON HYDROTHERMAL MINERALIZATION. STRUCTURES ASSOCIATION AT REGIONAL SCALE AND THE STYLES OF REGIONAL TECTONICS. EXTENSIONAL TECTONICS (RIFTING): GEOMETRY OF RIFTING; MODELS PURE- AND SIMPLE-SHEAR MODELS: REGIONAL EXAMPLES; RHEOLOGY OF THE LITHOSPHERE AND TYPES OF RIFTING; THE RIFT-DRIFT TRANSITION; RIFTING AND SEDIMENTATION: INTERACTIONS BETWEEN DEFORMATION, SEDIMENTATION AND EROSION. COMPRESSIONAL TECTONICS: "SUBDUCTION FACTORY" AND OROGENY; DYNAMICS OF OROGENIC SYSTEMS; SUBDUCTION OROGENS, COLLISION AND SUBDUCTION-ACCRETION OROGENS: STRUCTURAL STYLES, THERMO-BARIC REGIMES AND TECTONIC EVOLUTION; THE OROGENIC WEDGE AND ITS DYNAMICS (EVOLUTION AND STYLES OF THRUST-AND-FOLD BELTS). STRIKE-SLIP TECTONICS: STRUCTURAL CHARACTERISTICS AND ASSOCIATED STRUCTURES; STRIKE-SLIP AND TRANSFORM FAULTS; STRIKE-SLIP INTRAPLATE TECTONICS: REGIONAL EXAMPLES. STRUCTURAL GEOLOGY AND ITS APPLICATIONS: ORE DEPOSITS, GEOTHERMAL RESERVOIRS AND GEOTECHNICAL PROBLEMS (EXAMPLES).

DURING THE COURSE PRACTICAL EXERCISES WILL BE CARRIED OUT FOCUSED ON THE ANALYSIS AND INTERPRETATION OF STRUCTURAL DATA.
AT THE END OF THE COURSE, A WEEK-LONG CAMP IS SCHEDULED AIMED TO FIX THE BASIC CONCEPTS THROUGH ANALYSIS OF GEOLOGICAL STRUCTURES IN THE FIELD .


Core Documentation

1) G. DAVIS, S. REYNOLDS, "STRUCTURAL GEOLOGY OF ROCKS AND REGIONS", WILEY, 1996.
2) H. FOSSEN, STRUCTURAL gEOLOGY", CAMBRIDEGE UNIV. PRESS (2ND ED.), 2016
3) B. A. VAN DER PLUIJM, S. MARSHAK. W.W, "EARTH STRUCTURE" (2ND ED.), NORTON, 2004.
4) C. W. PASSCHIER, R. A. J. TROUW, "MICROTECTONICS” (2ND ED.), SPRINGER, 2006.

Complementary readings
-N. PRICE, J. COSGROVE, "ANALYSIS OF GEOLOGICAL STRUCTURES", CAMBRIDGE UNIVERSITY PRESS, 1990.
-R. TWISS, E. M: MOORES, "STRUCTURAL GEOLOGY" (2ND ED.), FREEMAN, 2007.
-R. H. GROSHONG, "3-D STRUCTURAL GEOLOGY: A PRACTICAL GUIDE TO SURFACE AND SUBSURFACE MAP INTERPRETATION" (2ND ED.), SPRINGER, 2006.
-J. SUPPE "PRINCIPLES OF STRUCTURAL GEOLOGY", PRENTICE-HALL, 1985.
-W. BURBANK, R. S. ANDERSON "TECTONIC GEOMORPHOLOGY", BLACKWELL, 2005.


Type of delivery of the course

The teaching will be given through lectures, laboratory exercises and field training

Type of evaluation

The oral exam focuses on the entire teaching program. Grades will be computed based on this relative weighting scheme:(i) Oral exam on the base of the program presented during the course, 65%; (ii) discussion on the field activity, 25%; (iii) Class participation, 10%

teacher profile | teaching materials

Programme

DEFORMATION AND STRAIN; COAXIAL AND NON-COAXIAL DEFORMATION; FINITE AND INCREMENTAL DEFORMATION; HETEROGENEOUS AND HOMOGENEOUS STRAIN; THE ELLIPSOID OF STRAIN; STRAIN STATES AND QUANTIFICATION OF THE FINITE STRAIN. THE STRESS TENSOR AND THE PRINCIPAL AXES OF STRESS; MOHR'S CIRCLES. PRINCIPLES OF RHEOLOGY: DUCTILE AND BRITTLE DEFORMATION; DEFORMATION MECHANISMS; CONSTITUTIVE LAWS AND STRESS-STRAIN RELATIONSHIPS; NEWTONIAN AND NON-NEWTONIAN BEHAVIOUR; CREEP PROCESS IN GEOLOGY; RECOVERY AND RECRYSTALLISATION (STATIC AND DYNAMIC RECRYSTALLISATION PROCESSES); DEFORMATION MAPS FOR MATERIALS OF GEOLOGICAL INTEREST; RHEOLOGY OF THE OCEANIC AND CONTINENTAL LITHOSPHERE. DEFORMATION AND BRITTLE SHEARING: MOHR-COULOMB FAILURE CRITERION; THE GRIFFITH CRITERION. ANDERSONIAN FAULTS: DYNAMIC ANALYSIS AND CLASSIFICATION (STRESS INVERSION). JOINTS AND VEINS. STRUCTURE OF A FAULT ZONE: FAULT CORE AND DAMAGE ZONES; CLASSIFICATION OF FAULT ROCKS. GROWTH OF FAULTS AND THEIR SPATIAL ORGANIZATION; LATERAL PROPAGATION OF FAULTS, OVERLAP, LINKAGE AND ASSOCIATED FRACTURING; KINEMATIC INDICATORS ON FAULT SURFACES; RIEDEL SHEARS (SYNTHETIC AND ANTITHETIC). FAULTS AND EARTHQUAKES: THE TOOLS OF STRUCTURAL GEOLOGY: THE STUDY OF ACTIVE AND EXHUMED SEISMOGENIC FAULTS (PSEUDOTACHYLYTES). DUCTILE DEFORMATION: ROCK FABRICS, PLANO-LINEAR STRUCTURES (FOLIATION AND LINEATION), S; L; S-L TECTONITES AND THEIR TECTONICS SIGNIFICANCE. FOLDING AND ASSOCIATED STRUCTURES (TYPES AND CLASSIFICATION; INTERFERENCE AND OVERPRINTING CRITERIA). DEFORMATION AND METAMORPHISM: BLASTESIS-DEFORMATION RELATIONSHIPS (MESO-AND MICRO-SCALE); DUCTILE SHEAR ZONES (MYLONITES) AND THEIR GEOLOGICAL SIGNIFICANCE, KINEMATIC CRITERIA (MESO-AND MICRO-SCALE). SHEAR ZONES AND FLUID CIRCULATION: FLUID-ROCK INTERACTION AND THE STRUCTURAL CONTROLS ON HYDROTHERMAL MINERALIZATION. STRUCTURES ASSOCIATION AT REGIONAL SCALE AND THE STYLES OF REGIONAL TECTONICS. EXTENSIONAL TECTONICS (RIFTING): GEOMETRY OF RIFTING; MODELS PURE- AND SIMPLE-SHEAR MODELS: REGIONAL EXAMPLES; RHEOLOGY OF THE LITHOSPHERE AND TYPES OF RIFTING; THE RIFT-DRIFT TRANSITION; RIFTING AND SEDIMENTATION: INTERACTIONS BETWEEN DEFORMATION, SEDIMENTATION AND EROSION. COMPRESSIONAL TECTONICS: "SUBDUCTION FACTORY" AND OROGENY; DYNAMICS OF OROGENIC SYSTEMS; SUBDUCTION OROGENS, COLLISION AND SUBDUCTION-ACCRETION OROGENS: STRUCTURAL STYLES, THERMO-BARIC REGIMES AND TECTONIC EVOLUTION; THE OROGENIC WEDGE AND ITS DYNAMICS (EVOLUTION AND STYLES OF THRUST-AND-FOLD BELTS). STRIKE-SLIP TECTONICS: STRUCTURAL CHARACTERISTICS AND ASSOCIATED STRUCTURES; STRIKE-SLIP AND TRANSFORM FAULTS; STRIKE-SLIP INTRAPLATE TECTONICS: REGIONAL EXAMPLES. STRUCTURAL GEOLOGY AND ITS APPLICATIONS: ORE DEPOSITS, GEOTHERMAL RESERVOIRS AND GEOTECHNICAL PROBLEMS (EXAMPLES).
DURING THE COURSE PRACTICAL EXERCISES WILL BE CARRIED OUT FOCUSED ON THE ANALYSIS AND INTERPRETATION OF STRUCTURAL DATA.
AT THE END OF THE COURSE, A WEEK-LONG CAMP IS SCHEDULED AIMED TO FIX THE BASIC CONCEPTS THOUGH ANALYSIS OF GEOLOGICAL STRUCTURES IN THE FIELD .

Core Documentation

THE BASIC READINGS:
-G. DAVIS, S. REYNOLDS, "STRUCTURAL GEOLOGY OF ROCKS AND REGIONS", WILEY, 1996.
-B. A. VAN DER PLUIJM, S. MARSHAK. W.W, "EARTH STRUCTURE" (2ND ED.), NORTON, 2004.
-C. W. PASSCHIER, R. A. J. TROUW, "MICROTECTONICS” (2ND ED.), SPRINGER, 2006.
-A. FOSSEN- STRUCTURAL GEOLOGY (2ND ED.), CAMBRIDGE, 2016


Reference Bibliography

COMPLEMENTARY READINGS: -N. PRICE, J. COSGROVE, "ANALYSIS OF GEOLOGICAL STRUCTURES", CAMBRIDGE UNIVERSITY PRESS, 1990. -R. TWISS, E. M: MOORES, "STRUCTURAL GEOLOGY" (2ND ED.), FREEMAN, 2007. -R. H. GROSHONG, "3-D STRUCTURAL GEOLOGY: A PRACTICAL GUIDE TO SURFACE AND SUBSURFACE MAP INTERPRETATION" (2ND ED.), SPRINGER, 2006. -J. SUPPE "PRINCIPLES OF STRUCTURAL GEOLOGY", PRENTICE-HALL, 1985. -W. BURBANK, R. S. ANDERSON "TECTONIC GEOMORPHOLOGY", BLACKWELL, 2005.

Type of delivery of the course

The teaching will be given through lectures, laboratory exercises and field training

Type of evaluation

The oral exam focuses on the entire teaching program. Grades will be computed based on this relative weighting scheme:(i) Oral exam on the base of the program presented during the course, 65%; (ii) discussion on the field activity, 25%; (iii) Class participation, 10%

teacher profile | teaching materials

Programme

DEFORMATION AND STRAIN; COAXIAL AND NON-COAXIAL DEFORMATION; FINITE AND INCREMENTAL DEFORMATION; HETEROGENEOUS AND HOMOGENEOUS STRAIN; THE ELLIPSOID OF STRAIN; STRAIN STATES AND QUANTIFICATION OF THE FINITE STRAIN. THE STRESS TENSOR AND THE PRINCIPAL AXES OF STRESS; MOHR'S CIRCLES. PRINCIPLES OF RHEOLOGY: DUCTILE AND BRITTLE DEFORMATION; DEFORMATION MECHANISMS; CONSTITUTIVE LAWS AND STRESS-STRAIN RELATIONSHIPS; NEWTONIAN AND NON-NEWTONIAN BEHAVIOUR; CREEP PROCESS IN GEOLOGY; RECOVERY AND RECRYSTALLISATION (STATIC AND DYNAMIC RECRYSTALLISATION PROCESSES); DEFORMATION MAPS FOR MATERIALS OF GEOLOGICAL INTEREST; RHEOLOGY OF THE OCEANIC AND CONTINENTAL LITHOSPHERE. DEFORMATION AND BRITTLE SHEARING: MOHR-COULOMB FAILURE CRITERION; THE GRIFFITH CRITERION. ANDERSONIAN FAULTS: DYNAMIC ANALYSIS AND CLASSIFICATION (STRESS INVERSION). JOINTS AND VEINS. STRUCTURE OF A FAULT ZONE: FAULT CORE AND DAMAGE ZONES; CLASSIFICATION OF FAULT ROCKS. GROWTH OF FAULTS AND THEIR SPATIAL ORGANIZATION; LATERAL PROPAGATION OF FAULTS, OVERLAP, LINKAGE AND ASSOCIATED FRACTURING; KINEMATIC INDICATORS ON FAULT SURFACES; RIEDEL SHEARS (SYNTHETIC AND ANTITHETIC). FAULTS AND EARTHQUAKES: THE TOOLS OF STRUCTURAL GEOLOGY: THE STUDY OF ACTIVE AND EXHUMED SEISMOGENIC FAULTS (PSEUDOTACHYLYTES). DUCTILE DEFORMATION: ROCK FABRICS, PLANO-LINEAR STRUCTURES (FOLIATION AND LINEATION), S; L; S-L TECTONITES AND THEIR TECTONICS SIGNIFICANCE. FOLDING AND ASSOCIATED STRUCTURES (TYPES AND CLASSIFICATION; INTERFERENCE AND OVERPRINTING CRITERIA). DEFORMATION AND METAMORPHISM: BLASTESIS-DEFORMATION RELATIONSHIPS (MESO-AND MICRO-SCALE); DUCTILE SHEAR ZONES (MYLONITES) AND THEIR GEOLOGICAL SIGNIFICANCE, KINEMATIC CRITERIA (MESO-AND MICRO-SCALE). SHEAR ZONES AND FLUID CIRCULATION: FLUID-ROCK INTERACTION AND THE STRUCTURAL CONTROLS ON HYDROTHERMAL MINERALIZATION. STRUCTURES ASSOCIATION AT REGIONAL SCALE AND THE STYLES OF REGIONAL TECTONICS. EXTENSIONAL TECTONICS (RIFTING): GEOMETRY OF RIFTING; MODELS PURE- AND SIMPLE-SHEAR MODELS: REGIONAL EXAMPLES; RHEOLOGY OF THE LITHOSPHERE AND TYPES OF RIFTING; THE RIFT-DRIFT TRANSITION; RIFTING AND SEDIMENTATION: INTERACTIONS BETWEEN DEFORMATION, SEDIMENTATION AND EROSION. COMPRESSIONAL TECTONICS: "SUBDUCTION FACTORY" AND OROGENY; DYNAMICS OF OROGENIC SYSTEMS; SUBDUCTION OROGENS, COLLISION AND SUBDUCTION-ACCRETION OROGENS: STRUCTURAL STYLES, THERMO-BARIC REGIMES AND TECTONIC EVOLUTION; THE OROGENIC WEDGE AND ITS DYNAMICS (EVOLUTION AND STYLES OF THRUST-AND-FOLD BELTS). STRIKE-SLIP TECTONICS: STRUCTURAL CHARACTERISTICS AND ASSOCIATED STRUCTURES; STRIKE-SLIP AND TRANSFORM FAULTS; STRIKE-SLIP INTRAPLATE TECTONICS: REGIONAL EXAMPLES. STRUCTURAL GEOLOGY AND ITS APPLICATIONS: ORE DEPOSITS, GEOTHERMAL RESERVOIRS AND GEOTECHNICAL PROBLEMS (EXAMPLES).

DURING THE COURSE PRACTICAL EXERCISES WILL BE CARRIED OUT FOCUSED ON THE ANALYSIS AND INTERPRETATION OF STRUCTURAL DATA.
AT THE END OF THE COURSE, A WEEK-LONG CAMP IS SCHEDULED AIMED TO FIX THE BASIC CONCEPTS THROUGH ANALYSIS OF GEOLOGICAL STRUCTURES IN THE FIELD .


Core Documentation

1) G. DAVIS, S. REYNOLDS, "STRUCTURAL GEOLOGY OF ROCKS AND REGIONS", WILEY, 1996.
2) H. FOSSEN, STRUCTURAL gEOLOGY", CAMBRIDEGE UNIV. PRESS (2ND ED.), 2016
3) B. A. VAN DER PLUIJM, S. MARSHAK. W.W, "EARTH STRUCTURE" (2ND ED.), NORTON, 2004.
4) C. W. PASSCHIER, R. A. J. TROUW, "MICROTECTONICS” (2ND ED.), SPRINGER, 2006.

Complementary readings
-N. PRICE, J. COSGROVE, "ANALYSIS OF GEOLOGICAL STRUCTURES", CAMBRIDGE UNIVERSITY PRESS, 1990.
-R. TWISS, E. M: MOORES, "STRUCTURAL GEOLOGY" (2ND ED.), FREEMAN, 2007.
-R. H. GROSHONG, "3-D STRUCTURAL GEOLOGY: A PRACTICAL GUIDE TO SURFACE AND SUBSURFACE MAP INTERPRETATION" (2ND ED.), SPRINGER, 2006.
-J. SUPPE "PRINCIPLES OF STRUCTURAL GEOLOGY", PRENTICE-HALL, 1985.
-W. BURBANK, R. S. ANDERSON "TECTONIC GEOMORPHOLOGY", BLACKWELL, 2005.


Type of delivery of the course

The teaching will be given through lectures, laboratory exercises and field training

Type of evaluation

The oral exam focuses on the entire teaching program. Grades will be computed based on this relative weighting scheme:(i) Oral exam on the base of the program presented during the course, 65%; (ii) discussion on the field activity, 25%; (iii) Class participation, 10%

teacher profile | teaching materials

Programme

DEFORMATION AND STRAIN; COAXIAL AND NON-COAXIAL DEFORMATION; FINITE AND INCREMENTAL DEFORMATION; HETEROGENEOUS AND HOMOGENEOUS STRAIN; THE ELLIPSOID OF STRAIN; STRAIN STATES AND QUANTIFICATION OF THE FINITE STRAIN. THE STRESS TENSOR AND THE PRINCIPAL AXES OF STRESS; MOHR'S CIRCLES. PRINCIPLES OF RHEOLOGY: DUCTILE AND BRITTLE DEFORMATION; DEFORMATION MECHANISMS; CONSTITUTIVE LAWS AND STRESS-STRAIN RELATIONSHIPS; NEWTONIAN AND NON-NEWTONIAN BEHAVIOUR; CREEP PROCESS IN GEOLOGY; RECOVERY AND RECRYSTALLISATION (STATIC AND DYNAMIC RECRYSTALLISATION PROCESSES); DEFORMATION MAPS FOR MATERIALS OF GEOLOGICAL INTEREST; RHEOLOGY OF THE OCEANIC AND CONTINENTAL LITHOSPHERE. DEFORMATION AND BRITTLE SHEARING: MOHR-COULOMB FAILURE CRITERION; THE GRIFFITH CRITERION. ANDERSONIAN FAULTS: DYNAMIC ANALYSIS AND CLASSIFICATION (STRESS INVERSION). JOINTS AND VEINS. STRUCTURE OF A FAULT ZONE: FAULT CORE AND DAMAGE ZONES; CLASSIFICATION OF FAULT ROCKS. GROWTH OF FAULTS AND THEIR SPATIAL ORGANIZATION; LATERAL PROPAGATION OF FAULTS, OVERLAP, LINKAGE AND ASSOCIATED FRACTURING; KINEMATIC INDICATORS ON FAULT SURFACES; RIEDEL SHEARS (SYNTHETIC AND ANTITHETIC). FAULTS AND EARTHQUAKES: THE TOOLS OF STRUCTURAL GEOLOGY: THE STUDY OF ACTIVE AND EXHUMED SEISMOGENIC FAULTS (PSEUDOTACHYLYTES). DUCTILE DEFORMATION: ROCK FABRICS, PLANO-LINEAR STRUCTURES (FOLIATION AND LINEATION), S; L; S-L TECTONITES AND THEIR TECTONICS SIGNIFICANCE. FOLDING AND ASSOCIATED STRUCTURES (TYPES AND CLASSIFICATION; INTERFERENCE AND OVERPRINTING CRITERIA). DEFORMATION AND METAMORPHISM: BLASTESIS-DEFORMATION RELATIONSHIPS (MESO-AND MICRO-SCALE); DUCTILE SHEAR ZONES (MYLONITES) AND THEIR GEOLOGICAL SIGNIFICANCE, KINEMATIC CRITERIA (MESO-AND MICRO-SCALE). SHEAR ZONES AND FLUID CIRCULATION: FLUID-ROCK INTERACTION AND THE STRUCTURAL CONTROLS ON HYDROTHERMAL MINERALIZATION. STRUCTURES ASSOCIATION AT REGIONAL SCALE AND THE STYLES OF REGIONAL TECTONICS. EXTENSIONAL TECTONICS (RIFTING): GEOMETRY OF RIFTING; MODELS PURE- AND SIMPLE-SHEAR MODELS: REGIONAL EXAMPLES; RHEOLOGY OF THE LITHOSPHERE AND TYPES OF RIFTING; THE RIFT-DRIFT TRANSITION; RIFTING AND SEDIMENTATION: INTERACTIONS BETWEEN DEFORMATION, SEDIMENTATION AND EROSION. COMPRESSIONAL TECTONICS: "SUBDUCTION FACTORY" AND OROGENY; DYNAMICS OF OROGENIC SYSTEMS; SUBDUCTION OROGENS, COLLISION AND SUBDUCTION-ACCRETION OROGENS: STRUCTURAL STYLES, THERMO-BARIC REGIMES AND TECTONIC EVOLUTION; THE OROGENIC WEDGE AND ITS DYNAMICS (EVOLUTION AND STYLES OF THRUST-AND-FOLD BELTS). STRIKE-SLIP TECTONICS: STRUCTURAL CHARACTERISTICS AND ASSOCIATED STRUCTURES; STRIKE-SLIP AND TRANSFORM FAULTS; STRIKE-SLIP INTRAPLATE TECTONICS: REGIONAL EXAMPLES. STRUCTURAL GEOLOGY AND ITS APPLICATIONS: ORE DEPOSITS, GEOTHERMAL RESERVOIRS AND GEOTECHNICAL PROBLEMS (EXAMPLES).
DURING THE COURSE PRACTICAL EXERCISES WILL BE CARRIED OUT FOCUSED ON THE ANALYSIS AND INTERPRETATION OF STRUCTURAL DATA.
AT THE END OF THE COURSE, A WEEK-LONG CAMP IS SCHEDULED AIMED TO FIX THE BASIC CONCEPTS THOUGH ANALYSIS OF GEOLOGICAL STRUCTURES IN THE FIELD .

Core Documentation

THE BASIC READINGS:
-G. DAVIS, S. REYNOLDS, "STRUCTURAL GEOLOGY OF ROCKS AND REGIONS", WILEY, 1996.
-B. A. VAN DER PLUIJM, S. MARSHAK. W.W, "EARTH STRUCTURE" (2ND ED.), NORTON, 2004.
-C. W. PASSCHIER, R. A. J. TROUW, "MICROTECTONICS” (2ND ED.), SPRINGER, 2006.
-A. FOSSEN- STRUCTURAL GEOLOGY (2ND ED.), CAMBRIDGE, 2016


Reference Bibliography

COMPLEMENTARY READINGS: -N. PRICE, J. COSGROVE, "ANALYSIS OF GEOLOGICAL STRUCTURES", CAMBRIDGE UNIVERSITY PRESS, 1990. -R. TWISS, E. M: MOORES, "STRUCTURAL GEOLOGY" (2ND ED.), FREEMAN, 2007. -R. H. GROSHONG, "3-D STRUCTURAL GEOLOGY: A PRACTICAL GUIDE TO SURFACE AND SUBSURFACE MAP INTERPRETATION" (2ND ED.), SPRINGER, 2006. -J. SUPPE "PRINCIPLES OF STRUCTURAL GEOLOGY", PRENTICE-HALL, 1985. -W. BURBANK, R. S. ANDERSON "TECTONIC GEOMORPHOLOGY", BLACKWELL, 2005.

Type of delivery of the course

The teaching will be given through lectures, laboratory exercises and field training

Type of evaluation

The oral exam focuses on the entire teaching program. Grades will be computed based on this relative weighting scheme:(i) Oral exam on the base of the program presented during the course, 65%; (ii) discussion on the field activity, 25%; (iii) Class participation, 10%